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This paper presents the dynamic responses of the coupled textile/rotor system
by finite element analysis. When textile is wound either on or off the rotor, the
system is non-conservative because mass, inertia and eccentricity of the unbalance
of rotor change with time, and also the length of textile is time-dependent. Both
the time-varying equations for textile and the whirling vibrations for rotor are
derived by Hamilton’s principle. It is a moving boundary problem since the
unknown length of textile has to be determined as a part of the solutions. The
special finite element formulations are developed by applying a complete linear
polynomial approximation. The number of elements is fixed while the size of the
element changes with time. The Runge–Kutta method is used to obtain numerical
results. The effects of constant and non-constant angular rotating speeds, shaft
stiffness and non-linear terms on the transient amplitudes of the textile and the
whirling deflection of the shaft are investigated.
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1. INTRODUCTION

Travelling string-like systems have broad applications in the areas of chemical,
textile, computer, and tape recorder industries as well as in many other processes.
Such systems involve wires, threads, and other materials with negligible bending
rigidity, a straight and unsagged equilibrium configuration. Much research on the
vibration behavior of string-like problems has been studied previously [1–3]. These
studies considered the string system to have a fixed length and no axial motion.
Survey papers by Mote [4] and Abrate [5] presented a picture of the state of the
art in the vibration and dynamic stability of the axially moving strings or beams.
Although string-like systems exhibit movement, the interest of such studies is still
in the fixed length consideration.
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For the problem of a vibration string with time-varying length, Kotera and
Kawai [6] analyzed free vibrations of a string with time-varying lengths by Laplace
transformation. It should be noted that methods of solving the problems
necessarily differ from the classical methods of treating the fixed length problems.
For instance, the concepts of natural modes and frequencies become meaningless
because as the length of string varies, the natural frequencies become
time-dependent and the independence of natural modes of oscillation is lost. While
in theory the motion of a string with a variable length can be described to any
desired degree of approximation by an infinite system of differential equations, the
mathematical difficulty usually becomes prohibitive for all but the first few orders
of approximation.

The problems involving the oscillations and the influence of reactive force on
the motion of a textile machine rotor on which the textile is wound up were
presented in a series of papers by Cveticanin [7–9]. With a new procedure based
on the Krylov–Bogoliubov method, Cveticanin [10] observed the dynamic
behavior of a rotor with variable parameters and small non-linearity. The
dynamics of a rotor with variable mass are given by Bessonov [11]. Usually, the
rotor consists of a disk which is symmetrically mounted at the middle of the shaft,
and the elastic force in the shaft is assumed to be non-linear. The mass of the shaft
is negligible in comparison to that of the disk. The mass of the rotor varies with
time due to winding on and off the band. Cveticanin [12] studied the textile
machine rotor with constant angular velocity. The above-mentioned papers only
concentrated on the vibration of the rotor. As far as non-linear vibrations are
concerned, little work has appeared on the subject to coupling oscillations of the
textile/rotor system. The purpose of this paper is to investigate the dynamic
behavior of the whole system, which consists of an axially moving textile and a
whirling rotor. The coupled equations for the textile/rotor system are derived by
Hamilton’s principle. A special finite element scheme is used to predict the
dynamic responses since the Jeffcott rotor has variable mass, inertia and unbalance
magnitude. We present the numerical results including the time-dependent length
of the textile and the time-dependent radius of the disk. The effects of angular
rotating speed, shaft stiffness, and non-linear terms on the transient amplitudes
are investigated for the coupled system.

2. SYSTEM DESCRIPTION

The coupled textile/rotor system is shown in Figure 1(a). Two fixed co-ordinate
systems xoy and XoY are used to describe the dynamic configuration. The Jeffcott
rotor model investigated here is similar to that used by Vance and Lee [13]. It
consists of a single, centrally located, unbalanced disk and an orthotropically
elastic shaft, running on two rigid bearings. The shaft is assumed massless as
compared with the large massive disk. The bearing supports are assumed to be
rigid, with the shaft providing all the flexibility. The generalized coordinate r is
chosen to describe the whirling oscillation of the rotor system which has a constant
angular velocity v. Since the rotor is whirling, the textile length is time-dependent.
The transverse vibration of the textile is in the interval 0E xE l(t). The textile
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is subjected to an initial tension T and has simple supports as its boundary points
x=0 and l(t).

Since the connection point x= l(t) is common to the disk and textile, this point
on the textile has the same velocity and acceleration as that in the tangential

Figure 1. (a) Model of the coupled textile/rotor system. (b) Physical configuration of the coupled
textile/rotor system. (c) The deformed element coordinate system.
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direction of the disk. It is seen from Figure 1(b) that as the textile is wound on,
the disk rotates in a clockwise direction and the shaft angular velocity v is
negative.

The function of the rotor is to wind the textile on or off, so the rotor mass
changes with time. In Figure 1(b), R(t) is the radius of the disk, and c is the rotary
angle. The textile is subjected to an initial tension T, which acts along the tangent
line of the disk in the undeformed configuration. The point x= l(t) is one
connection point between the textile and rotor. The two vectors, RA(t) and R(t),
are perpendicular at point A. From the geometry of Figure 1(b), the time-varying
length of the textile is given by

l(t)=zl20 + r2 +2l0r cos c−R2(t). (1)

The rotor is modelled as a rigid disk mounted on a massless shaft which is
supported by two perfect rotating bearings. During winding the textile on or off
the disk, the effective mass and radius of the disk vary. The mass m(t) and radius
R(t) are assumed to be as given in the papers by Cveticanin [7] and Bessonov [11],

m(t)=m0 −R1rvt, (2)

R(t)=0R2
0 −

R1hvt
p 1

1/2

, (3)

where m0 and R0 are, respectively, the mass and radius of the disk without textile,
R1 =R0 + (h/2), h is the average thickness of the textile, v is the angular velocity
of the rotor and has a negative value for winding up the textile, and t is time. The
unbalance is given by the distance e=CM, where C is the geometric center of the
disk and M is its mass center, as given by Bessonov[11]:

e(t)=−
2
m0

R2
1r sin

vt
2

. (4)

The co-ordinate r gives the magnitude of shaft deflection, and the time derivative
c� gives the whirling speed. The instantaneous angular location of the unbalance
with respect to the plane of the shaft bending is given by b. Considering the rotor
in synchronous vibration, the angle b remains constant. Thus, the whirling speed
equals the shaft speed, c� =v.

3. FINITE ELEMENT DISCRETIZATION

The textile length l(t) is time-dependent when the rotor rotates. Thus, the finite
element method carried out for the fixed-size domain is not practical in general
because it requires a very large number of small elements. Literature on an axially
moving beam develops a more elegant approach element with a varying domain
was given by Stylianou and Tabarrok [14]. In this paper, we adopt this concept
and use a variable-domain element and the number of elements remains fixed.
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3.1.  

From Figure 1(b), the position vector of any point on the textile after
deformation is

Rx (t)= x+w

=(x cos f−w sin f)i+(x sin f+w cos f)j, (5)

where i, j are unit vectors corresponding to X and Y components, respectively.
w=w(x, t) is the deflection of the textile, and f is the rotary angle of the textile.

The Lagrangian function for the textile is the kinetic energy minus the potential
energy. Thus, we have

Ls =
1
2 g

l(t)

0

r
DRx

Dt
·
DRx

Dt
dx−g

l(t)

0

(ToE + 1
2EAo2

E ) dx

=
1
2 g

l(t)

0 6r$f� 2x2 +2f� 2x
dw
dt

+0dw
dt1

2

+ ẋ2 −2f� ẋw+f� 2w2%
−Tw2

x − 1
4EAw4

x7 dx, (6)

where r is the string mass per length, oE =(1/2)w2
x is the engineering strain, EA

denotes the rigidity of the textile, ToE and (1/2)EAo2
E are respectively the terms due

to initial tension and deflection. The latter is measured from the initially tensioned
configuration.

In order to develop the finite element equation for the string with
time-dependent length, we divide the entire length [0E xE l(t)] of the string into
N elements. Each element has an equal length h(t) as shown in Figure 1(c). The
Lagrangian function for the jth element is then given by

Lj =
1
2 g

xj+1

xj
6r$f� 2x2 +2xf�

dw
dt

+0dw
dt1

2

+ẋ2 −2ẋf� w+f� 2w2%−Tw2
x −

EAw4
x

4 7 dx. (7)

In the process of integrating equation (7), with a finite element discretization
shown in Figure 1(c), the transverse deflection of the travelling string is modelled
by a complete linear polynomial as

w(x, t)= [N(x, l(t))]{q(t)}, (8)
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where

{q(t)}=6 qj (t)
qj+1(t)7,

[N]=$xj+1 − x
xj+1 − xj

x− xj

xj+1 − xj%
=

n
l(t) $0l(t) j+1

n
− x10x− l(t)

j
n1%. (9)

It is worth noting that the shape function vector [N] is time-dependent by virtue
of the length l(t) changing with time. In order to evaluate dw/dt and wx for the
element Lagrangian function (7), we use equation (8) and perform the total
differentiation to obtain

wx =[B]{q}, dw
dt

=[Nt ]{q}+ ẋ[B]{q}+[N]{q̇}, (10)

where [B]= [Nx ] and the dot indicates partial differentiation of time with respect
to t.

Substituting (10) and (8) into (7),

Lj = 1
2{q̇T[mj ]q̇+ q̇T[c1j ]q+ q[c2j ]q̇T + qT[k1j ]q+ qT[kj ]q+[ fnj ]q

+[ f1j ]q+[ f2j ]q̇+ f� 2(x)2 + ẋ2}. (11)

where

[mj ]=g
xj+1

xj

r(NTN) dx,

[c1j ]=g
xj+1

xj

r(ẋNTB+NTNt ) dx, [c2j ]=g
xj+1

xj

r(ẋBTN+NT
t N) dx,

[k1j ]=g
xj+1

xj

(−TBTB) dx,

[kj ]=g
xj+1

xj

r(ẋ2BTB+ ẋBTNt + ẋNT
t B+NT

t Nt +f� NTN) dx,

[fnj ]=g
xj+1

xj

−
1
8

EA(qBTBqqTBTB) dx,

[ f1j ]=g
xj+1

xj

r[2xf� (ẋB+Nt )−2ẋf� N] dx, [ f2j ]=g
xj+1

xj

r(2xf� N) dx
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in which [fnj ] represents the non-linear term. For the detailed integrations of these
coefficient matrices please see the Appendix.

3.2.  

The Lagrangian function for the rotor is

Lr = 1
2m{[ṙ− e(c� − b� ) sin b+ ė cos b]2 + [rc� + e(c� + b� ) cos b+ ė sin b]2}

+ 1
2Ic�

2 − 1
2kxr2 cos2 b− 1

2kyr2 sin2 b

−mg[r sin (c+ b)+ e sin (c+ b)], (12)

where kx and ky are shaft stiffnesses in the X and Y directions respectively. It should
be noted that the mass m, inertial I and eccentricity e of the rotor are functions
of time. However, eccentricity was considered constant as in Fung and Shieh [15].

In order to derive the virtual work done by the initial tension T on the rotor,
the virtual displacement at the connection pont will be obtained first. The position
vector of the connection point can be written as

RA (t)= (l0 + r cos c−R(t) cos u)i+(r sin c+R(t) sin u)j. (13)

The virtual displacement of the connection point is

dRA (t)= (dr cos c+R(t) sin udu)i+(dr sin c+R(t) cos udu)j. (14)

Since u is not the generalized co-ordinate chosen to describe the dynamic whirling,
du should be replaced by dr. To obtain the required relationship, we note from
Figure 1(b) that u=(p/2)−f. Hence we have du=−df and the following
geometrical relation:

sin f=sin (f1 +f2)

=
R(t)
a

cos f2 +
r sin c

a
cos f1

=
1
a2 [R(t)(l0 + r cos c)+ l(t)r sin c], (15)

where a=zl20 + r2 +2l0r cos c is the auxiliary line. Taking the virtual angular
displacement from equation (15), we have

df=Crdr, (16)

where

Cr =
$(R(t) cos c+

1
l(t)

(r+ l0 cos c)r sin c+ l(t) sin c%
[l(t)(l0 + r cos c)−R(t)r sin c]

−
2(r+ l0 cos c)[R(t)(r+ l0 cos c)+ l(t)r sin c]

a2[l(t)(l0 + r cos c)−R(t)r sin c]
. (17)

Equation (16) states the relationship between df and dr.
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The initial tension vector is

T=−T(cos fi+sin fj). (18)

The virtual work done by the initial tension can be expressed as

dW=T · dRA (t)

=T[cos c cos f−sin c sin f+CrR(t)]dr. (19)

3.3.     / 

To obtain the equations for the coupled system, the calculus of variation and
Hamilton’s principle are employed. However, the application of the principle is
not straight-forward, since there is a moving boundary involved at x= l(t). It is
seen from equation (1) that the length l(t) will be determined when the rotor
deflection r is obtained.

We consider the entire system including the textile with length 0E xE l(t) and
the rotor. Hamilton’s principle can be written as

g
t2

t1
$d g

l(t)

0

Ls (x, t; w, wx , wt ) dx+ dLr (t; r, ṙ)+ dW% dt=0, (20)

where t1 and t2 are two arbitrary end times. We consider the string including the
entire length [0E xE l(t)] and use N elements in the finite element discretization.
Taking variation of equation (20), applying integration by part, using Leibnitz’s
law, and collecting the like terms, we obtain

0=g
t2

t1
6Ls [l(t), t; w(l(t), t)]dl(t)+ s

N

j=1 $1Lj

1q
−

d
dt 01Lj

1q̇1%dq

+01Lr

1r
−

1

1t
1Lr

1ṙ
+T[cos c cos f−sin c sin f+CrR(t)]1dr7 dt

+$s
N

j=1

1Lj

1q̇
dq+

1Lr

1ṙ
dr%

t2

t1

. (21)

The varied path coincides with the true path at the two end points t1 and t2.
It follows that dw(t1)= dw(t2)=0 and dr(t1)= dr(t2)=0. In the variation process,
dl(t) exists in the first term of equation (21) because the position x= l(t) is not
specified. From equation (1), we also have

dl(t)=
1

l(t)
(r+ l0 cos c)dr. (22)
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Substituting equation (22) into the first term of equation (21), and collecting them
with the (1Lr /1r− 1/1t 1Lr /1ṙ)dr term, we can obtain the Lagrange equations for
the textile and rotor respectively, as

s
N

j=1 $1Lj

1q
−

d
dt 01Lj

1q̇1%=0, (23)

1Lr

1r
−

1

1t
1Lr

1ṙ
+T[cos c cos f−sin c sin f]

+
1

l(t)
(r+ l0 cos f) · Ls [l(t), t; w(l(t), t)]=0. (24)

In deriving the element equation, we isolate a typical element from the mesh
and formulate the variational problem by using its finite element model. Then,
coefficients of the assembled matrix can be obtained directly. The assembled global
equations for the string and rotor are, respectively,

[M]Q� +[C]Q� +[K]Q=−[F]− [Fn ], (25)

r̈+
ṁ
m

ṙ+$kx

m
cos2 b+

ky

m
sin2 b−v2%r

=ev2 cos b+2ėv sin b+ e
ṁ
m

f� sin b− ė
ṁ
m

cos b

−ë cos b− g sin c−
T
m

[cos c cos f−sin c sin f]

−
(r+ l0 cos f)

2ml(t)
[rẋ2 + rẋ2w2

x (l(t), t)−Tw2
x (l(t), t)− 1

4EAw4
x (l(t), t)], (26)

where

[M]= s
N

j=1

[mj ], [C]= s
N

j=1

[c*j ], [K]= s
N

j=1

[k*j ],

[F]= s
N

j=1

[ f*j ], [Fn ]= s
N

j=1

[ fnj ], Q=[q1, q2, . . . , qn ]T,

[c*j ]= [c2j ]− [c2j ]T − [ṁj ], [k*j ]= [kj ]+ [k1j ]− [ċ2j ], [ f*j ]=
[ f1j ]− [ f� 2j ]

2
.

Equations (25) and (26) are the non-linear, second order differential equations
with variable coefficients. [K] and [M] matrices correspond respectively to the
well-known stiffness and mass matrices of the string. [F] matrix is caused by the
gyroscopic effect of the moving string. [Fn ] matrix is caused by the non-linear terms
of the deflections.



.-.   .76

From the governing equations (25) and (26), some observations are made as
follows:

(i) The mass m(t), inertia I(t) and the eccentricity e(t) of the unbalance of the
rotor are time-varying when the textile is wound on or off.

(ii) In this paper, longitudinal elastic deformation of the textile is neglected,
and so every point of the textile has the same axial traveling velocity ẋ and
acceleration ẍ, which are given by

ẋ=−R(t)c� , 0Q xQ l(t), (27a)

ẍ=−R� (t)c� −R(t)c� , 0Q xQ l(t). (27b)

In equations (27a, b), the shaft deflection r is very small compared to R(t)
and is hence neglected in this study.

(iii) The axial travelling velocity ẋ has a positive value as the textile moves along
the positive x-axis direction. In the case of constant angular velocity of the
shaft, the radius R(t) of the disk and the axial velocity ẋ of the textile are
non-linear functions of time. Meanwhile, R� (t) is not equal to zero and the
axial travelling acceleration ẋ also exists.

(iv) The term [F] in equation (25) is the whirling effects of the rotor on the textile
vibration. The terms including wx (l(t), t) in equation (26) and the end effect
at x= l(t) of the textile vibration on the rotor whirling. From equation (10)
and zero node displacement qN+1 =0 at x= l(t), we have
wx (l(t), t)=BNqN . Thus, equations (25) and (26) can be combined together
in a matrix form and to be solved.

(v) The terms containing EA in equations (25) and (26) are due to the geometric
non-linearity of the textile. If they are neglected for the small-amplitude
transverse vibrations of the textile, the governing equation (25) becomes
linear. However, equation (26) is still non-linear due to the moving
boundary at x= l(t).

(vi) The emphasis is placed on the moving boundary condition of the coupled
textile/rotor system. The connection point x= l(t) is not specified and its
position moves with time. The boundary position x= l(t) will be solved
simultaneously with equations (25) and (26).

To solve the problem, the Runge–Kutta numerical method will be used to
integrate equations (25) and (26) for the transient solutions.

4. NUMERICAL RESULTS AND DISCUSSION

Since the amplitudes of the textile/rotor system are governed by two
non-linearly coupled equations (25) and (26) with time-dependent coefficients, an
analytical solution is not possible. The examples given here are chosen to
demonstrate the effectiveness of the variable-size element, and to discuss the
dynamic responses of the textile/rotor system when the angular velocity v of rotor
is accelerated, decelerated and taken as a periodic perturbation. Finally, we also
make a comparison between the linear and non-linear effects on the transient
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Figure 2. Middle deflections of the string for various element numbers [N=4 (–·–·–), N=10
(–––), N=12 (——)].

amplitudes of the textile, the whirling deflection of the rotor, and the
time-dependent textile length and the disk radius.

In Figure 2, numerical results show the transient displacements of the string at
the middle point by taking element numbers N=4, 10 and 12. In this figure, we
simplify the dynamic equations (25) and (26) by setting the rotor at rest, v=0.
The other parameters are: T=100 N, r=1 kg/m, l0 =1 m, R0 =0 m and EA=0.
The initial displacement is a sine wave with amplitude 0·1 m. It is well known that
the period is 0·2 s. For economy in computing time and desired accuracy 10−9 to
match the period 0·2 s well, we take element number N=10 in the following
studies even though many more elements will provide better accuracy.

In Figure 3, we show the coupling effect on the transient vibrations of the
textile/rotor system as the rotor rotates with an angular speed v$ 0. The
parameter values are: T=100 N, r=1 kg/m, l0 =1 m, m0 =4·95 kg, R0 =0·1 m,
h=0·02 m, e(t)=−(2/m0)R2

1r sin (vt/2) and the values of shaft stiffness are
chosen as kx = ky =493 430 N/m. We consider the textile and rotor with the zero
initial conditions: qi (0)=0, q̇i (0)=0, i=2, 3, . . . , N, and r(0)= ṙ(0)=0. The
results with the angular velocities v=−p (dash line) and v=−2p (solid line)
are compared in Figure 3. The transient amplitudes of the textile at middle point
are shown in Figure 3(a). It is noted that the amplitude builds up and then
diminishes in a regular pattern. A beating phenomenon may occur, since the
forcing frequency is close to, but not exactly equal to, the natural frequency of
the string system. We have also noted that the force term [F] has a strong influence
on the amplitude of the string. It is found that the amplitudes with v=−2p are
larger than those with v=−p. Figure 3(b) shows the transient whirling vibrations
of the shaft. Figure 3(c) shows the textile length decreases with time. Figure 3(d)
shows the rotor radius R(t) increases with time. Figure 3(e) and (f) show the
angular velocity f� and acceleration f� of the string, both exhibiting a beating
phenomenon.

In Figure 4, we make a comparison for the rotary angular velocity
v=−10+2 cos (Vft) with Vf = pc2/l0z1− v0/c2 and Vf =2pc2/l0z1− v0/c2.
The other parameters are the same as those in Figure 3. It is observed that the
amplitudes of both the textile and rotor are larger and fluctuate more excitedly
when the rotary angular velocity Vf =2pc2/l0z1− v0/c2. It can seen that the
system is unstable.
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Figure 3. Influence of angular speed of rotor on the transient amplitudes for the case, v=−p
(– – –); v=−2p (——). (a) Middle deflections of the textile. (b) The deflections of the shaft. (c)
Time-dependent length l of the textile. (d) Time-dependent radius R of the disk. (e) Time history
of angular velocity f� . (f) Time history of angular acceleration f� .
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Figure 4. Comparison of dynamic responses by taking the rotary angular velocity
v=−10+2 cos (Vft), Vf = pc2/l0z1− v0/c2 (– – –) and Vf =2pc2/l0z1− v0/c2 (——). (a) Middle
deflections of the textile. (b) The deflections of the shaft (c) Time-dependent length l of the textile.
(d) Time-dependent radius R of the disk.

In Figure 5, we show the compared results of the angular velocity of the rotor,
v=−10+v1 cos (Vft) by setting Vf =2pc2/l0z1− v0/c2, v1 =1, 2 and 3. The
other parameters are the same as those in Figure 3. Obviously, as the perturbation
amplitude v1 is larger, the fluctuation is more excited. We note that not only the
transient amplitudes of the textile become larger but also the transient deflections
of the shaft exhibit beating phenomena.

In Figure 6, we consider the effect of the non-linear term on the textile and rotor.
It is observed from Figure 6(a) and (b) that the amplitude is larger and the period
of oscillation is shorter when the non-linearity is included. The curves are obtained
by making the angular velocity of the rotor equal to −2p and the non-linear
terms are EA=0, 100T and 900T. The other parameters are the same as those
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Figure 5. Comparison of dynamic response by taking the rotary angular velocity
v=−10+v1 cos (Vft), Vf =2pc2/l0z1− v0/c2, v1 =1 (. . . .), v1 =2 (– – –) and v1 =3 (——). (a)
Middle deflections of the textile. (b) The deflections of the shaft (c) Time-dependent length l of the
textile. (d) Time-dependent radius R of the disk.

in Figure 3. Figure 6(c) shows the time-dependent textile length. Figure 6(d) shows
the time-dependent radius of the disk. The radius is the same for the linear and
non-linear cases.

5. CONCLUSIONS

In this study, a model of the coupled textile/rotor system that includes the
transverse textile vibrations and the rotor whirling has been formulated by
Hamilton’s principle. However, the application is not straight-forward, since there
is a moving boundary and position is not prescribed. In the approximation
algorithm, the finite element scheme and Runge–Kutta method are employed to
obtain numerical results. We use a variable-size element for which the number of
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Figure 6. Non-linear effects on the transient textile amplitudes and whirling deflection. EA=900T
(——), EA=100T (– – –) and EA=0 (. . . .). (a) Middle deflections of the textile. (b) The deflections
of the shaft. (c) Time-dependent length l of the textile. (d) Time-dependent radius R of the disk.

elements in the system remains fixed and element size changes with time. The
non-constant angular velocity of the rotor and the non-linear terms of the textile
are also considered. The time-dependent length of the textile and the radius of the
rotor, angular velocity and acceleration are shown for the coupled system.

From the numerical results, we can draw the following conclusions:
(1) The coupled textile/rotor system is a moving boundary problem since the

unknown length of the textile has to be determined as a part of the solutions
of the governing equations.

(2) If the geometric non-linearity of the textile is neglected for the
small-amplitude vibrations, the governing equation of the textile becomes
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linear, but the equation for the rotor remains non-linear due to its non-linear
boundary at the connection point.

(3) When the effect of the non-linear terms in the textile and rotor are
considered, the amplitudes are larger and the periods of oscillations are
shorter. We note that both the transient amplitudes of the string and the
transient deflections of the shaft exhibit beating phenomena.

(4) For the non-linearity coupled textile/rotor system, the axial travelling speed
of the textile has a positive value as it moves along the positive axis
direction. In the case of constant angular velocity of the rotor, the radius
of the disk and the axial speed of the textile are non-linear functions of time
because the rate change of the rotor radius is not equal to zero and axial
travelling acceleration also exists.
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APPENDIX
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